Abstract
In this article, we consider the development of unbiased estimators of the Hessian, of the log-likelihood function with respect to parameters, for partially observed diffusion processes. These processes arise in numerous applications, where such diffusions require derivative information, either through the Jacobian or Hessian matrix. As time-discretizations of diffusions induce a bias, we provide an unbiased estimator of the Hessian. This is based on using Girsanov's Theorem and randomization schemes developed through Mcleish (2011 Monte Carlo Methods Appl. 17, 301-315 (doi:10.1515/mcma.2011.013)) and Rhee & Glynn (2016 Op. Res. 63, 1026-1043). We demonstrate our developed estimator of the Hessian is unbiased, and one of finite variance. We numerically test and verify this by comparing the methodology here to that of a newly proposed particle filtering methodology. We test this on a range of diffusion models, which include different Ornstein-Uhlenbeck processes and the Fitzhugh-Nagumo model, arising in neuroscience. © 2022 The Authors.
| Original language | English |
|---|---|
| Article number | 20210710 |
| Journal | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
| Volume | 478 |
| Issue number | 2262 |
| Online published | 22 Jun 2022 |
| DOIs | |
| Publication status | Published - 29 Jun 2022 |
| Externally published | Yes |
Research Keywords
- coupled conditional particle filter
- Hessian estimation
- partially observed diffusions
- randomization methods
Publisher's Copyright Statement
- This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/