Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

400 Scopus Citations
View graph of relations

Author(s)

  • Xu Zhen
  • Ye Tao
  • Zhongfu An
  • Peng Chen
  • Runfeng Chen
  • Wei Huang
  • Kanyi Pu

Detail(s)

Original languageEnglish
Article number1606665
Journal / PublicationAdvanced Materials
Volume29
Issue number33
Online published28 Jun 2017
Publication statusPublished - 6 Sept 2017
Externally publishedYes

Abstract

Afterglow or persistent luminescence eliminates the need for light excitation and thus circumvents the issue of autofluorescence, holding promise for molecular imaging. However, current persistent luminescence agents are rare and limited to inorganic nanoparticles. This study reports the design principle, synthesis, and proof-of-concept application of organic semiconducting nanoparticles (OSNs) with ultralong phosphorescence for in vivo afterglow imaging. The design principle leverages the formation of aggregates through a top-down nanoparticle formulation to greatly stabilize the triplet excited states of a phosphorescent molecule. This prolongs the particle luminesce to the timescale that can be detected by the commercial whole-animal imaging system after removal of external light source. Such ultralong phosphorescent of OSNs is inert to oxygen and can be repeatedly activated, permitting imaging of lymph nodes in living mice with a high signal-to-noise ratio. This study not only introduces the first category of water-soluble ultralong phosphorescence organic nanoparticles but also reveals a universal design principle to prolong the lifetime of phosphorescent molecules to the level that can be effective for molecular imaging.

Research Area(s)

  • afterglow, lymph node imaging, molecular imaging, organic semiconducting nanoparticles, phosphorescence

Citation Format(s)

Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. / Zhen, Xu; Tao, Ye; An, Zhongfu et al.
In: Advanced Materials, Vol. 29, No. 33, 1606665, 06.09.2017.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review