Abstract
Optical time-stretch imaging enables the continuous capture of non-repetitive events in real time at a line-scan rate of tens of MHz—a distinct advantage for the ultrafast dynamics monitoring and high-throughput screening that are widely needed in biological microscopy. However, its potential is limited by the technical challenge of achieving significant pulse stretching (that is, high temporal dispersion) and low optical loss, which are the critical factors influencing imaging quality, in the visible spectrum demanded in many of these applications. We present a new pulse-stretching technique, termed free-space angular-chirp-enhanced delay (FACED), with three distinguishing features absent in the prevailing dispersive-fiber-based implementations: (1) it generates substantial, reconfigurable temporal dispersion in free space (41 ns nm − 1) with low intrinsic loss (o6 dB) at visible wavelengths; (2) its wavelength-invariant pulse-stretching operation introduces a new paradigm in time-stretch imaging, which can now be implemented both with and without spectral encoding; and (3) pulse stretching in FACED inherently provides an ultrafast all-optical laser-beam scanning mechanism at a line-scan rate of tens of MHz. Using FACED, we demonstrate not only ultrafast laser-scanning time-stretch imaging with superior bright-field image quality compared with previous work but also, for the first time, MHz fluorescence and colorized time-stretch microscopy. Our results show that this technique could enable a wider scope of applications in high-speed and high-throughput biological microscopy that were once out of reach. © The Author(s) 2017.
| Original language | English |
|---|---|
| Article number | e16196 |
| Journal | Light: Science and Applications |
| Volume | 6 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - 2017 |
| Externally published | Yes |
Bibliographical note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].Funding
We thank P Yeung and S Chan for preparing the THP-1 and RBC samples for us. This work was partially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region of China (HKU 7172/12E, HKU 720112E, HKU 719813E, HKU 707712 P, HKU 17207715, HKU 17205215, HKU 17208414 and HKU 17304514) and the University Development Funds of HKU.
Research Keywords
- Optical time-stretch imaging
- Pulse stretching
- Ultrafast laser scanning
Publisher's Copyright Statement
- This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/