Tubular Microcapsules with Polysaccharide Membranes Based on a Co-axial Microfluidic Chip

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)6281-6289
Journal / PublicationACS Biomaterial Science and Engineering
Volume5
Issue number11
Online published11 Oct 2019
Publication statusPublished - 11 Nov 2019

Abstract

The tubularlike three-dimensional tissue scaffold is an important architecture in biomedical engineering, but its construction remains a big challenge for existing techniques. This work reports the polysaccharide-biomaterial-based tubular microcapsule, which was fabricated by integrating a co-axial flow microfluidic chip and a polyelectrolyte complex technique. First, we fabricate the densely packed coiled calcium alginate hydrogel microfibers as the building block by a co-axial microfluid chip. Then, the densely packed coiled microfibers were coated with a multilayer membrane through layer-by-layer adsorption of alginate and chitosan. After that, the microfibers with an alginate-chitosan-alginate membrane were expanded and transformed into a tubular microcapsule structure by liquefaction. The tubular microcapsule exhibits a selectively permeable property of different-molecular-weight FITC-dextran/bovine serum albumin compared with original calcium alginate microfibers. Moreover, the tubular microcapsule with a liquefied lumen and a thin membrane allows the sustainable release of encapsulants under the alkaline environment. Our research paves an alternative way of manufacturing artificial biological tube architectures having potential applications for transporting and delivering drugs.

Research Area(s)

  • tubular structure, microcapsule, microfluidics, LbL assembly, VASCULAR NETWORKS, TISSUE, FABRICATION, MICROFIBERS, ENCAPSULATION, SCAFFOLDS, HYDROGELS, RELEASE