Tree structure convolutional neural networks for gait-based gender and age classification

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

6 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)2145–2164
Number of pages20
Journal / PublicationMultimedia Tools and Applications
Volume82
Issue number2
Online published20 Jun 2022
Publication statusPublished - Jan 2023

Abstract

Gender classification and age estimation are tasks in which humans excel. If gender and age of human can be recognized automatically from images, it will be very helpful in many applications such as intelligent surveillance, micromarketing, etc. We propose a framework for gender and age classification through gait analysis. Gait-based recognition is a feasible approach as the gait of human subject can still be perceived at a long distance. The spatio-temporal gait features are concisely represented as Gait Energy Image (GEI), which is then input to a tree structure convolutional neural network (CNN). We train and test the first model on a single-view gait dataset. Based on the tree structure CNN framework, we propose a larger model for gender and age classification with the multi-view gait dataset. Our models can achieve gender classification accuracy of 97.42% and 99.11% on single-view gait and multi-view gait respectively. We then use our model to perform age group estimation and binary (young and elder groups) classification. Also, our models can achieve the best performance in specific age estimation in terms of various numerical measures than various recently proposed methods.

Research Area(s)

  • Age estimation, Convolutional neural network, Gait energy image, Gender classification