Tree distribution, morphology and modelled air pollution in urban parks of Hong Kong

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number109304
Journal / PublicationJournal of Environmental Management
Volume248
Early online date29 Jul 2019
Publication statusPublished - 15 Oct 2019

Abstract

Trees offer a range of ecosystem services and remain important in providing human benefits. However, emerging literature questions the long-accepted view of trees being able to improve air quality in urban parks. The aerodynamic effect of trees was identified as a major reason for the change of pollutant distribution in near-road parks, where trees can act as porous barriers and cause localised concentration increase. Although not yet fully developed, planting strategies aiming to mitigate the negative effect of vegetation on air quality should be encouraged in future park design. In this study, we explored the effect of tree planting design on pollutant diffusion by integrating field surveys in urban parks in Hong Kong with computational fluid dynamic (CFD) modelling. A series of indicators associated with tree morphology and landscape were derived from the surveys and their influence on air pollutant distribution in parks was examined using ENVI-MET. Dense trees with low crown base were found effective in improving air quality within parks when planted as barriers with a width of ~15 m at borders. However, more extensive planting led to a decrease in wind velocity and an increase in pollutant concentrations, which should be avoided. Tall trees tended to have little influence on airflow at the pedestrian level, which means they seem appropriate for small urban parks where wide barriers are not applicable and rapid ventilation should be encouraged. The tree distribution also altered the airflow and pollutant dispersion in parks. Our study provides clues for thoughtful planting strategies which can optimise air quality in urban parks.

Research Area(s)

  • Aerodynamic effect, Leaf area index, Traffic emission, Tree growth form, Tree height, Wind pattern