Trapping atoms with evanescent light fields from integrated optical waveguides

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

  • Jr Burke J.P.
  • S. T. Chu
  • G. W. Bryant
  • C. J. Williams
  • P. S. Julienne

Detail(s)

Original languageEnglish
Pages (from-to)52-61
Journal / PublicationProceedings of SPIE - The International Society for Optical Engineering
Volume4271
Publication statusPublished - 2001
Externally publishedYes

Conference

TitleOptical Pulse and Beam Propagation III
PlaceUnited States
CitySan Jose, CA
Period24 - 25 January 2001

Abstract

We theoretically investigate three approaches to trapping atoms above linear integrated optical waveguides. A two-color scheme balances the decaying evanescent fields of red- and blue-detuned light to produce a potential minimum above the guide. A one-color surface trap proposal uses blue-detuned light and the attractive surface interaction to provide a potential minimum. A third proposal uses blue-detuned light in two guides positioned above and below one another. The atoms are confined to the "dark" spot in the vacuum gap between the guides. We find that all three approaches can be used in principle to trap atoms in two- or three-dimensions with a few 10's of mW of laser power. Of these three methods, we show that the dark spot guide is the most robust to power fluctuations and provides the most viable design approach to constructing integrated optical circuits that could transport and manipulate atoms in a controlled manner.

Research Area(s)

  • Atom optics, Atom traps, Dipole traps, Integrated optics, Waveguides

Citation Format(s)