Transformed Dynamic Quantile Regression on Censored Data
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 874-886 |
Journal / Publication | Journal of the American Statistical Association |
Volume | 116 |
Issue number | 534 |
Online published | 14 Jan 2020 |
Publication status | Published - 2021 |
Externally published | Yes |
Link(s)
Abstract
We propose a class of power-transformed linear quantile regression models for time-to-event observations subject to censoring. By introducing a process of power transformation with different transformation parameters at individual quantile levels, our framework relaxes the assumption of logarithmic transformation on survival times and provides dynamic estimation of various quantile levels. With such formulation, our proposal no longer requires the potentially restrictive global linearity assumption imposed on a class of existing inference procedures for censored quantile regression. Uniform consistency and weak convergence of the proposed estimator as a process of quantile levels are established via the martingale-based argument. Numerical studies are presented to illustrate the outperformance of the proposed estimator over existing contenders under various settings.
Research Area(s)
- Censored quantile regression, Empirical process, Power transformation, Survival analysis
Citation Format(s)
Transformed Dynamic Quantile Regression on Censored Data. / Chu, Chi Wing; Sit, Tony; Xu, Gongjun.
In: Journal of the American Statistical Association, Vol. 116, No. 534, 2021, p. 874-886.
In: Journal of the American Statistical Association, Vol. 116, No. 534, 2021, p. 874-886.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review