Trading under the proof-of-stake protocol – A continuous-time control approach

Wenpin Tang*, David D. Yao

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Citations (Scopus)

Abstract

We develop a continuous-time control approach to optimal trading in a Proof-of-Stake (PoS) blockchain, formulated as a consumption-investment problem that aims to strike the optimal balance between a participant's (or agent's) utility from holding/trading stakes and utility from consumption. We present solutions via dynamic programming and the Hamilton–Jacobi–Bellman (HJB) equations. When the utility functions are linear or convex, we derive close-form solutions and show that the bang-bang strategy is optimal (i.e., always buy or sell at full capacity). Furthermore, we bring out the explicit connection between the rate of return in trading/holding stakes and the participant's risk-adjusted valuation of the stakes. In particular, we show when a participant is risk-neutral or risk-seeking, corresponding to the risk-adjusted valuation being a martingale or a sub-martingale, the optimal strategy must be to either buy all the time, sell all the time, or first buy then sell, and with both buying and selling executed at full capacity. We also propose a risk-control version of the consumption-investment problem; and for a special case, the “stake-parity” problem, we show a mean-reverting strategy is optimal. © 2023 Wiley Periodicals LLC.
Original languageEnglish
Pages (from-to)979-1004
JournalMathematical Finance
Volume33
Issue number4
Online published24 May 2023
DOIs
Publication statusPublished - Oct 2023
Externally publishedYes

Research Keywords

  • consumption-investment
  • continuous-time control
  • cryptocurrency
  • dynamic programming
  • HJB equations
  • Proof of Stake (PoS) protocol
  • risk control

Fingerprint

Dive into the research topics of 'Trading under the proof-of-stake protocol – A continuous-time control approach'. Together they form a unique fingerprint.

Cite this