Tracking dynamics of two-dimensional continuous attractor neural networks
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Article number | 012017 |
Journal / Publication | Journal of Physics: Conference Series |
Volume | 197 |
Publication status | Published - 2009 |
Externally published | Yes |
Link(s)
Abstract
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results. © 2009 IOP Publishing Ltd.
Bibliographic Note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.
Citation Format(s)
Tracking dynamics of two-dimensional continuous attractor neural networks. / Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si.
In: Journal of Physics: Conference Series, Vol. 197, 012017, 2009.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review