Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL)

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

28 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)8901–8908
Journal / PublicationACS Applied Materials and Interfaces
Volume13
Issue number7
Online published15 Feb 2021
Publication statusPublished - 24 Feb 2021

Abstract

Stretchable and flexible electronics conformal to human skin or implanted into biological tissues has attracted considerable interest for emerging applications in health monitoring and medical treatment. Although various stretchable materials and structures have been designed and manufactured, most are limited to two-dimensional (2D) layouts for interconnects and active components. Here, by using projection microstereolithography (PμSL)-based three-dimensional (3D) printing, we introduce a versatile microfabrication process to push the manufacturing limit and achieve previously inaccessible 3D geometries at a high resolution of 2 μm. After coating the printed microstructures with thin Au films, the 3D conductive structures offer exceptional stretchability (μ130%), conformability, and stable electrical conductivity (<5% resistance change at 100% tensile strain). This fabrication process can be further applied to directly create complicated 3D interconnect networks of sophisticated active components, as demonstrated with a stretchable capacitive pressure sensor array here. The proposed scheme allows a simple, facile, and scalable manufacturing route for complex, integrated 3D flexible electronic systems.

Research Area(s)

  • 3D microelectronics, 3D printing, advanced manufacturing, flexible electronics, stretchable electronics