Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

5 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)15289-15299
Journal / PublicationOptics Express
Volume26
Issue number12
Early online date4 Jun 2018
Publication statusPublished - 11 Jun 2018

Link(s)

Abstract

We propose a three-dimensional (3D) long-period grating structure that has a controllable grating width and depth and can be formed at any chosen position on the surface of a waveguide core with a single photolithography process. The process relies on the partial etching of small structures on the surface of a polymer waveguide through a waveguide mask with narrow apertures that define the grating pattern. The 3D grating structure allows the design of mode converters for any nondegenerate guided modes of a waveguide, regardless of their symmetry properties, and thus relaxes the design constraint of conventional two-dimensional waveguide gratings. To show the flexibility of the 3D grating structure, we present several mode converters fabricated with this structure. The mode-conversion efficiencies achieved are higher than 90% at the resonance wavelengths. In addition, we demonstrate a three-mode multiplexer by integrating a grating-based mode converter with two asymmetric directional couplers. The proposed grating structure together with the fabrication process can greatly facilitate the development of grating-based devices, especially for MDM applications.

Research Area(s)

Download Statistics

No data available