Thermodynamic destabilization of magnesium hydride using Mg-based solid solution alloys

Chengshang Zhou, Zhigang Zak Fang, Jun Lu, Xiangyi Luo, Chai Ren, Peng Fan, Yang Ren, Xiaoyi Zhang

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

68 Citations (Scopus)

Abstract

Thermodynamic destabilization of magnesium hydride is a difficult task that has challenged researchers of metal hydrides for decades. In this work, solid solution alloys of magnesium were exploited as a way to destabilize magnesium hydride thermodynamically. Various elements were alloyed with magnesium to form solid solutions, including: indium (In), aluminum (Al), gallium (Ga), and zinc (Zn). Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen were investigated. Equilibrium pressures were determined by pressure-composition-isothermal (PCI) measurements, showing that all the solid solution alloys that were investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Compared to magnesium hydride, the enthalpy (δH) of decomposition to form hydrogen and the magnesium alloy can be reduced from 78.60 kJ/(mol H2) to 69.04 kJ/(mol H2), and the temperature of 1 bar hydrogen pressure can be reduced to 262.33 °C, from 282.78 °C, for the decomposition of pure magnesium hydride. Further, in situ XRD analysis confirmed that magnesium solid solutions were indeed formed after the dehydrogenation of high-energy ball-milled MgH2 with the addition of the solute element(s). XRD results also indicated that intermetallic phases of Mg with the solute elements were present along with MgH2 in the rehydrogenated magnesium solid solution alloys, providing a reversible hydrogen absorption/desorption reaction pathway. However, the alloys were shown to have lower hydrogen storage capacity than that of pure MgH2. © 2014 American Chemical Society.
Original languageEnglish
Pages (from-to)11526-11535
JournalThe Journal of Physical Chemistry C
Volume118
Issue number22
DOIs
Publication statusPublished - 5 Jun 2014
Externally publishedYes

Bibliographical note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].

Fingerprint

Dive into the research topics of 'Thermodynamic destabilization of magnesium hydride using Mg-based solid solution alloys'. Together they form a unique fingerprint.

Cite this