The logarithmic relaxation process and the critical temperature of liquids in nano-confined states

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

2 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Article number33374
Journal / PublicationScientific Reports
Online published27 Sep 2016
Publication statusPublished - 2016



The logarithmic relaxation process is the slowest of all relaxation processes and is exhibited by only a few molecular liquids and proteins. Bulk salol, which is a glass-forming liquid, is known to exhibit logarithmic decay of intermediate scattering function for the β-relaxation process. In this article, we report the influence of nanoscale confinements on the logarithmic relaxation process and changes in the microscopic glass-transition temperature of salol in the carbon and silica nanopores. The generalized vibrational density-of-states of the confined salol indicates that the interaction of salol with ordered nanoporous carbon is hydrophilic in nature whereas the interaction with silica surfaces is more hydrophobic. The mode-coupling theory critical temperature derived from the QENS data shows that the dynamic transition occurs at much lower temperature in the carbon pores than in silica pores. The results of this study indicate that, under nano-confinements, liquids that display logarithmic β-relaxation phenomenon undergo a unique glass transition process.

Research Area(s)

Download Statistics

No data available