THE EFFECT OF HEATED WALL THICKNESS AND MATERIALS ON NUCLEATE BOILING AT HIGH HEAT FLUX

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1103-1114
Journal / PublicationInternational Communications in Heat and Mass Transfer
Volume26
Issue number8
Publication statusPublished - Nov 1999
Externally publishedYes

Abstract

The present work is to numerically investigate the effect of heater side factors on the nucleate boiling at high heat flux, which is characterized by the existence of macrolayer. Two-region equations are proposed to study both thermo-capillary driven flow in the liquid layer and heat conduction in the solid wall. The numerical results indicate that the thermo-capillary driven flow in the macrolayer and evaporation at the vapor-liquid interface constitute a very efficient heat transfer mechanism to explain the high heat transfer coefficient of nucleate boiling heat transfer near CHF. For a very thin wall and/or wall with a poor thermal conductivity (heat side factors) are found to have significant effect on flow pattern in the liquid layer and the temperature distribution in the heated wall.