Ten-year climatology of summer monsoon over South China and its surroundings simulated from a regional climate model

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

11 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)141-157
Journal / PublicationInternational Journal of Climatology
Issue number2
Publication statusPublished - Feb 2006
Externally publishedYes


In a previous study by the authors, a regional climate model (hereafter the RCM) developed to study the summer monsoon over South China (SC) and the South China Sea (SCS) has been tested and found to be able to simulate to a large extent the precipitation over this region for the months of May and June. To examine the interannual variability of the summer monsoon here, it is necessary to establish a model climatology to serve as a comparison and to reduce or even remove any systematic model biases. This paper presents the analyses of such a 10-year climatology (1991-2000). The model was initialized on 1 April and integrated up to the end of June for the ten years. The initial atmospheric conditions and lateral boundary data used in this study are from the European Centre for Medium-range Weather Forecasts '40-year' reanalyses. The RCM can reproduce well the main features of the monsoon circulation and vertical structure of the atmosphere. The RCM can simulate the intensification and northwestward displacement of the south Asian upper anticyclones from May to June, as well as the low-level moisture transport from the Bay of Bengal to SC. In the simulation, the average SCS summer monsoon onset occurs in the fourth pentad of May, which is consistent with the results from previous observational research. In addition, the RCM can reproduce the main characteristics of the onset such as the change of the low-level zonal flow from easterly to westerly as well as the rapid increase in daily precipitation. The SC and SCS precipitation anomalies have the correct sign in almost all the years. The shortcomings of the model simulation include an under-prediction of the strength of the subtropical high over the Northwest Pacific and the moisture transport from the Bay of Bengal to the Indochina Peninsula (IC) and SCS. A cold bias in surface air temperature is also observed, with the 10-year mean biases of the simulated surface air temperature over SC, SCS and IC in May and June being about -2.1 °C, -2.4 °C and -1.4°C respectively. The 10-year mean biases of the simulated daily precipitation rate over SC, SCS and IC are about 2.0, -3.8 and 3.5 mm d-1 respectively. Copyright © 2005 Royal Meteorological Society.

Research Area(s)

  • Interannual variability, Regional climate model, South China, South China Sea, Summer monsoon