Systems of hyperbolic conservation laws with a resonant moving source
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 337-358 |
Journal / Publication | Journal of Differential Equations |
Volume | 245 |
Issue number | 2 |
Publication status | Published - 15 Jul 2008 |
Link(s)
Abstract
In this paper, we study the stability of a single transonic shock wave solution to the hyperbolic conservation laws with a resonant moving source. Compared with the previous results [W.-C. Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (9) (1999) 1075-1098; T.P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (2) (1982) 243-260] on this stability problem, in this paper, the transonic ith shock is assumed to be relatively strong and stable in the sense of Majda. Then the framework of [M. Lewicka, L1 stability of patterns of non-interacting large shock waves, Indiana Univ. Math. J. 49 (4) (2000) 1515-1537; M. Lewicka, Stability conditions for patterns of noninteracting large shock waves, SIAM J. Math. Anal. 32 (5) (2001) 1094-1116 (electronic)] can be applied. A new criterion is obtained to test whether such a shock is time asymptotically stable or not. And by constructing the Liu-Yang functional, one can prove the L1 stability of the shock under the stability condition. This is an extension of the result [S.-Y. Ha, T. Yang, L1 stability for systems of hyperbolic conservation laws with a resonant moving source, SIAM J. Math. Anal. 34 (5) (2003) 1226-1251 (electronic); W.-C. Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (9) (1999) 1075-1098] to a more general case. © 2008 Elsevier Inc. All rights reserved.
Research Area(s)
- Hyperbolic conservation laws, Liu-Yang functional, Resonant source
Citation Format(s)
Systems of hyperbolic conservation laws with a resonant moving source. / Hua, Jiale.
In: Journal of Differential Equations, Vol. 245, No. 2, 15.07.2008, p. 337-358.
In: Journal of Differential Equations, Vol. 245, No. 2, 15.07.2008, p. 337-358.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review