Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host?guest inclusion complexation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

43 Scopus Citations
View graph of relations

Author(s)

  • Qiang Zhao
  • Shufang Wang
  • Xinjian Cheng
  • Deling Kong

Detail(s)

Original languageEnglish
Pages (from-to)1364-1369
Journal / PublicationBiomacromolecules
Volume11
Issue number5
Publication statusPublished - 10 May 2010

Abstract

In this article, we report a novel surface modification method for cellulose fiber that is based on supramolecular assembly. β-Cyclodextrin (β-CD) was first covalently grafted onto the fiber surface. Then poly(ε-caprolactone) (PCL) oligomers having both ends capped with adamantane motifs (i.e., PCL-AD) were immobilized to the cellulose fiber surface through the host?guest inclusion complexation between β-CD and AD motif. FTIR-ATR and XPS analyses confirmed the successful assembly of PCL-ADs, which was further supported by the increasing trend of weight gain with the concentration of CDs on the fiber surface. Contact angle and TGA measurements reflect the enhanced hydrophobicity and thermal stability of the cellulose fiber as a consequence of this modification. The morphologies of the cellulose fiber before and after the assembly process have also been compared by SEM. © 2010 American Chemical Society.

Citation Format(s)

Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host?guest inclusion complexation. / Zhao, Qiang; Wang, Shufang; Cheng, Xinjian; Yam, Richard C. M.; Kong, Deling; Li, Robert K. Y.

In: Biomacromolecules, Vol. 11, No. 5, 10.05.2010, p. 1364-1369.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review