Superpixel Segmentation Based on Square-Wise Asymmetric Partition and Structural Approximation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

9 Scopus Citations
View graph of relations



Original languageEnglish
Article number8673630
Pages (from-to)2625-2637
Journal / PublicationIEEE Transactions on Multimedia
Issue number10
Online published25 Mar 2019
Publication statusPublished - Oct 2019


Superpixel segmentation aims at grouping discretizing pixels into high-level correlative units and reducing the complexity of subsequent tasks, e.g., saliency detection and object tracking. Existing superpixel segmentation algorithms mainly focus on maintaining the geometrical information, while neglecting the irregular structure of superpixels. In this paper, a superpixel segmentation method is proposed to generate approximately structural superpixels with sharp boundary adherence and comprehensive semantic information. The superpixel segmentation is formulated as a square-wise asymmetric partition problem, where the semantic perceptual superpixels are recorded in a square level to preserve abundant semantic information and save storage simultaneously. Moreover, in order to achieve regular-shape superpixel units to better adhere to image boundaries and contours, a combinatorial optimization strategy is devised to achieve an optimal combination of squares and isolated pixels. Experimental comparisons with some state-of-the-art superpixel segmentation methods on the public benchmarks demonstrate the effectiveness of the proposed method quantitatively and qualitatively. In addition, we have applied the method to brain tissue segmentation to illustrate superior performance.

Research Area(s)

  • combinatorial optimization, square-wise asymmetric partition, structural approximation, Superpixel