Superexchange-stabilized long-distance Cu sites in rock-salt-ordered double perovskite oxides for CO2 electromethanation
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 1565 |
Journal / Publication | Nature Communications |
Volume | 15 |
Online published | 21 Feb 2024 |
Publication status | Published - 2024 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85185455424&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(5d341244-81e3-4778-9c57-817045992d9a).html |
Abstract
Cu-oxide-based catalysts are promising for CO2 electroreduction (CO2RR) to CH4, but suffer from inevitable reduction (to metallic Cu) and uncontrollable structural collapse. Here we report Cu-based rock-salt-ordered double perovskite oxides with superexchange-stabilized long-distance Cu sites for efficient and stable CO2-to-CH4 conversion. For the proof-of-concept catalyst of Sr2CuWO6, its corner-linked CuO6 and WO6 octahedral motifs alternate in all three crystallographic dimensions, creating sufficiently long Cu-Cu distances (at least 5.4 Å) and introducing marked superexchange interaction mainly manifested by O-anion-mediated electron transfer (from Cu to W sites). In CO2RR, the Sr2CuWO6 exhibits significant improvements (up to 14.1 folds) in activity and selectivity for CH4, together with well boosted stability, relative to a physical-mixture counterpart of CuO/WO3. Moreover, the Sr2CuWO6 is the most effective Cu-based-perovskite catalyst for CO2 methanation, achieving a remarkable selectivity of 73.1% at 400 mA cm−2 for CH4. Our experiments and theoretical calculations highlight the long Cu-Cu distances promoting *CO hydrogenation and the superexchange interaction stabilizing Cu sites as responsible for the superb performance. © The Author(s) 2024.
Research Area(s)
Citation Format(s)
In: Nature Communications, Vol. 15, 1565, 2024.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review