Abstract
This paper proposes a method which generates a set of weights to synthesize sum or difference pattern with precisely controlled sidelobe level (SLL), null, and dynamic range ratio (DRR) for arbitrary arrays. Our pattern synthesis approach reduces mutual coupling between the neighboring elements and complexity of the feeding network design. However, the formulated optimization problem is nonconvex due to the nonconvex objective function and fractional DRR constraint. To tackle it, we firstly introduce two sets of auxiliary variables: one for DRR constraint and the other for sidelobe and null constraints. By doing so, we then decompose the original optimization problem into three sets of subproblems characterized by the auxiliary variables and weight variables. To facilitate the subproblem with weight variables reaching its optimum values, we derive an appropriate range of step size. Finally, we iteratively solve these subproblems to obtain the solution to the original problem. Extensive experiments employing non-equispaced linear and rectangular arrays, concentric ring array, and cylinder array, are implemented to demonstrate that the developed approach can accurately control SLLs, null and DRR for arbitrary arrays.
Original language | English |
---|---|
Pages (from-to) | 1940-1953 |
Number of pages | 14 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 70 |
Issue number | 3 |
Online published | 15 Oct 2021 |
DOIs | |
Publication status | Published - Mar 2022 |
Research Keywords
- Antenna arrays
- arbitrary antenna array
- difference pattern
- Dynamic range
- dynamic range ratio (DRR)
- Linear antenna arrays
- Linear programming
- Microstrip antenna arrays
- nonconvex optimization
- null
- Optimization
- Radar
- Sum pattern