Sub-Nanometer Electron Beam Phase Patterning in 2D Materials
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 2200702 |
Journal / Publication | Advanced Science |
Volume | 9 |
Issue number | 23 |
Online published | 16 Jun 2022 |
Publication status | Published - 15 Aug 2022 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85132152877&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(8bda505c-fa88-4124-aceb-6b850ad8da8b).html |
Abstract
Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T’’ phase to metallic T’ and T phases in 2D rhenium disulfide (ReS2) and rhenium diselenide (ReSe2) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.
Research Area(s)
- 2D materials, electrical contact, phase patterning, scanning transmission electron microscopy (STEM), sub-nanometer
Citation Format(s)
Sub-Nanometer Electron Beam Phase Patterning in 2D Materials. / Zheng, Fangyuan; Guo, Deping; Huang, Lingli et al.
In: Advanced Science, Vol. 9, No. 23, 2200702, 15.08.2022.
In: Advanced Science, Vol. 9, No. 23, 2200702, 15.08.2022.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available