Study of boundary slippage using movement of a post-impact EHL dimple under conditions of pure sliding and zero entrainment velocity
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 159-165 |
Journal / Publication | Tribology Letters |
Volume | 44 |
Issue number | 2 |
Publication status | Published - Nov 2011 |
Link(s)
Abstract
A well-recognized phenomenon of typical traction tests of elastohydrodynamic lubrication (EHL) contacts is finite maximum traction at increasing speeds, which led to the postulation that the limiting shear stress of liquid lubricants, a high-pressure rheological property, existed. If slippage occurs at the oil-solid boundary, the limiting traction measured is not necessarily an intrinsic property of the lubricant but rather a function of interfacial properties between the bounding solid surface and the lubricant. A recent report presented experimental evidence of boundary slippage at EHL contacts using a simple methodology based on differences in the speed of oil entrapment and the apparent entrainment. The reported experiments were carried out under pure sliding conditions. The phenomenon may also be explained by internal slippage in the bulk fluid film because of the limiting shear stress of the lubricant. To clarify this, similar experiments were repeated under zero entrainment velocity (ZEV) conditions. Evidence of the highly pressurized lubricant at the center of the oil entrapment sliding against the solid bounding surface was obtained. The purpose of this article is to discuss whether the slippage is attributed to the limiting shear stress of the oil or the critical shear stress of the oil/solid interfaces, and how to differentiate the magnitudes of the critical shear stress of the two bounding surfaces in a conventional optical EHL test rig. © Springer Science+Business Media LLC 2011.
Research Area(s)
- Boundary slip, Critical/limiting shear stress, Elastohydrodynamic lubrication, Interferometry
Citation Format(s)
Study of boundary slippage using movement of a post-impact EHL dimple under conditions of pure sliding and zero entrainment velocity. / Li, X. M.; Guo, F.; Wong, P. L.
In: Tribology Letters, Vol. 44, No. 2, 11.2011, p. 159-165.
In: Tribology Letters, Vol. 44, No. 2, 11.2011, p. 159-165.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review