Structural relaxation and self-repair behavior in nano-scaled Zr-Cu metallic glass under cyclic loading : Molecular dynamics simulations

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

29 Scopus Citations
View graph of relations

Author(s)

  • Y.C. Lo
  • H.S. Chou
  • Y.T. Cheng
  • J.R. Morris
  • P.K. Liaw

Detail(s)

Original languageEnglish
Pages (from-to)954-960
Journal / PublicationIntermetallics
Volume18
Issue number5
Online published16 Feb 2010
Publication statusPublished - May 2010
Externally publishedYes

Abstract

Bulk metallic glasses are generally regarded as highly brittle materials at room temperature, with deformation localized within a few principal shear bands. In this simulation work, it is demonstrated that when the Zr-Cu metallic glass is in a small size-scale, it can deform under cyclic loading in a semi-homogeneous manner without the occurrence of pronounced mature shear bands. Instead, the plastic deformation in simulated samples proceeds via the network-like shear-transition zones (STZs) by the reversible and irreversible structure-relaxations during cyclic loading. Dynamic recovery and reversible/irreversible structure rearrangements occur in the current model, along with annihilation/creation of excessive free volumes. This behavior would in-turn retard the damage growth of metallic glass. Current studies can help to understand the structural relaxation mechanism in metallic glass under loading. The results also imply that the brittle bulk metallic glasses can become ductile with the sample size being reduced. The application of metallic glasses in the form of thin film or nano pieces in micro-electro-mechanical systems (MEMS) could be promising.

Research Area(s)

  • B. Fatigue resistance and crack growth, B. Glasses, metallic, B. Plastic deformation mechanisms, E. Simulations, atomistic

Citation Format(s)

Structural relaxation and self-repair behavior in nano-scaled Zr-Cu metallic glass under cyclic loading : Molecular dynamics simulations. / Lo, Y.C.; Chou, H.S.; Cheng, Y.T.; Huang, J.C.; Morris, J.R.; Liaw, P.K.

In: Intermetallics, Vol. 18, No. 5, 05.2010, p. 954-960.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review