Stein estimation for the drift of Gaussian processes using the Malliavin calculus

Nicolas Privault, Anthony Réveillac

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

23 Citations (Scopus)
17 Downloads (CityUHK Scholars)

Abstract

We consider the nonparametric functional estimation of the drift of a Gaussian process via minimax and Bayes estimators. In this context, we construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and superharmonic functionals on Gaussian space. Our results are illustrated by numerical simulations and extend the construction of James-Stein type estimators for Gaussian processes by Berger and Wolpert [J. Multivariate Anal. 13 (1983) 401-424]. © Institute of Mathematical Statistics, 2008.
Original languageEnglish
Pages (from-to)2531-2550
JournalAnnals of Statistics
Volume36
Issue number5
DOIs
Publication statusPublished - Oct 2008

Research Keywords

  • Gaussian space
  • Harmonic analysis
  • Malliavin calculus
  • Nonparametric drift estimation
  • Stein estimation

Publisher's Copyright Statement

  • COPYRIGHT TERMS OF DEPOSITED FINAL PUBLISHED VERSION FILE: © Institute of Mathematical Statistics, 2008. Privault, N., & Réveillac, A. (2008). Stein estimation for the drift of Gaussian processes using the Malliavin calculus. Annals of Statistics, 36(5), 2531-2550. https://doi.org/10.1214/07-AOS540.

Fingerprint

Dive into the research topics of 'Stein estimation for the drift of Gaussian processes using the Malliavin calculus'. Together they form a unique fingerprint.

Cite this