Static analysis of Reissner-Mindlin plates by differential quadrature element method

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

44 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)705-710
Journal / PublicationJournal of Applied Mechanics, Transactions ASME
Volume65
Issue number3
Publication statusPublished - Sep 1998
Externally publishedYes

Abstract

In this paper, a new numerical method, the differential quadrature element method has been developed for two-dimensional analysis of bending problems of Reissner-Mindlin plates. The basic idea of the differential quadrature element method is to divide the whole variable domain into several subdomains (elements) and to apply the differential quadrature method for each element. The detailed formulations for the differential quadrature element method and compatibility conditions between elements are presented. The convergent characteristics and accuracy of the differential quadrature element method are carefully investigated for the solution of the two-dimensional bending problems of Reissner-Mindlin plates. Finally, the differential quadrature element method is applied to analyze several bending problems of two-dimensional Reissner-Mindlin plates with different discontinuities including the discontinuous loading conditions, the mixed boundaries, and the plates with cutout. The accuracy and applicability of this method have been examined by comparing the differential quadrature element method solutions with the existing solutions obtained by other numerical methods and the finite element method solutions generated using ANSYS 5.3.