Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasi-2D Perovskites

Fangzhou Liu, Christopher Chang Sing Chan, Chao Ma, Ho Won Tam, Tik Lun Leung, Jingyang Lin, Aleksandra B. Djurišić*, Kam Sing Wong*, Jasminka Popović, Alan Man Ching Ng, Wai Kin Chan, Wei Chen, Zhubing He, Ayotunde Emmanuel Adesina, Yishu Foo, Juan Antonio Zapien

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Citations (Scopus)

Abstract

Significant enhancement of the light emission in Ruddlesden–Popper organic–inorganic halide perovskites is obtained by antisolvent induced spontaneous formation of nanocrystals in an amorphous matrix. This morphology change results in the passivation of defects and significant enhancement of light emission and 16 times higher photoluminescence quantum yield (PLQY), and it is applicable to different spacer cations. The use of trioctylphosphine oxide results in further defect passivation leading to an increase in PLQY (≈2.3 times), the suppression of lower energy emission in low temperature photoluminescence spectra, the dominance of radiative recombination, and the disappearance of thermal quenching of the luminescence. The proposed method offers a reproducible, controllable, and antisolvent-insensitive alternative to energy landscape engineering to utilize energy funneling phenomenon to achieve bright emission. Instead of facilitating fast energy transfer from lower to higher number of perovskite sheets to prevent nonradiative losses, it is demonstrated that defects can be effectively passivated via morphology control and the use of a passivating agent, so that bright emission can be obtained from single phase nanocrystals embedded in amorphous matrix, resulting in light emitting diodes with a maximum external quantum efficiency of 2.25%.
Original languageEnglish
Article number1900269
JournalAdvanced Optical Materials
Volume7
Issue number19
Online published21 Jun 2019
DOIs
Publication statusPublished - 4 Oct 2019

Research Keywords

  • light emitting diodes
  • organic–inorganic halide perovskites
  • photoluminescence
  • Ruddlesden–Popper perovskites

Fingerprint

Dive into the research topics of 'Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasi-2D Perovskites'. Together they form a unique fingerprint.

Cite this