Sphingolipid Profiling Reveals Different Extent of Ceramide Accumulation in Bovine Retroperitoneal and Subcutaneous Adipose Tissues
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 473 |
Journal / Publication | Metabolites |
Volume | 10 |
Issue number | 11 |
Online published | 19 Nov 2020 |
Publication status | Published - Nov 2020 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85096539522&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(6fdf8d8c-0d05-46a3-93cb-39bc1d406db5).html |
Abstract
Sphingolipids are bioactive lipids that can modulate insulin sensitivity, cellular differentiation, and apoptosis in a tissue-specific manner. However, their comparative profiles in bovine retroperitoneal (RPAT) and subcutaneous adipose tissue (SCAT) are currently unknown. We aimed to characterize the sphingolipid profiles using a targeted lipidomics approach and to assess whether potentially related sphingolipid pathways are different between SCAT and RPAT. Holstein bulls (n = 6) were slaughtered, and SCAT and RPAT samples were collected for sphingolipid profiling. A total of 70 sphingolipid species were detected and quantified by UPLC-MS/MS in multiple reaction monitoring (MRM) mode, including ceramide (Cer), dihydroceramide (DHCer), sphingomyelin (SM), dihydrosphingomyelin (DHSM), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), galactosylceramide (GalCer), glucosylceramide (GluCer), lactosylceramide (LacCer), sphinganine (DHSph), and sphingosine (Sph). Our results showed that sphingolipids of the de novo synthesis pathway, such as DHSph, DHCer, and Cer, were more concentrated in RPAT than in SCAT. Sphingolipids of the salvage pathway and the sphingomyelinase pathway, such as Sph, S1P, C1P, glycosphingolipid, and SM, were more concentrated in SCAT. Our results indicate that RPAT had a greater extent of ceramide accumulation, thereby increasing the concentration of further sphingolipid intermediates in the de novo synthesis pathway. This distinctive sphingolipid distribution pattern in RPAT and SCAT can potentially explain the tissue-specific activity in insulin sensitivity, proinflammation, and oxidative stress in RPAT and SCAT.
Research Area(s)
- sphingolipids, ceramides, adipose tissue, retroperitoneal adipose tissue, subcutaneous adipose tissue, bovine
Citation Format(s)
Sphingolipid Profiling Reveals Different Extent of Ceramide Accumulation in Bovine Retroperitoneal and Subcutaneous Adipose Tissues. / Leung, Yue Hei; Christiane Bäßler, Sonja; Koch, Christian et al.
In: Metabolites, Vol. 10, No. 11, 473, 11.2020.
In: Metabolites, Vol. 10, No. 11, 473, 11.2020.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available