Spectral method for analyzing motions of Ellis fluid over corrugated boundaries

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations



Original languageEnglish
Article number021401
Journal / PublicationJournal of Fluids Engineering, Transactions of the ASME
Issue number2
Publication statusPublished - 2011
Externally publishedYes


A spectral method for solving the steady flow of a shear-thinning Ellis fluid is discussed for the case of a planar channel with corrugated boundaries. Polynomial approximations are employed for the velocity and viscosity distributions in the regions around singularities. The proposed algorithm employs a fixed computational domain with the physical domain of interest submerged inside the computational domain. The flow boundary conditions are imposed using the concept of immersed boundary conditions. The method, thus, eliminates the need for grid generation. The algorithm relies on Fourier expansions in the flow direction and Chebyshev expansions in the transverse direction. Various tests confirm spectral accuracy of the algorithm. © 2011 American Society of Mechanical Engineers.

Research Area(s)

  • corrugated boundaries, Ellis fluid, immersed boundary condition method, non-Newtonian fluid, spectral method

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.