SpecHLA enables full-resolution HLA typing from sequencing data

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number100589
Journal / PublicationCell Reports Methods
Volume3
Issue number9
Online published14 Sept 2023
Publication statusPublished - 25 Sept 2023

Link(s)

Abstract

Reconstructing diploid sequences of human leukocyte antigen (HLA) genes, i.e., full-resolution HLA typing, from sequencing data is challenging. The high homogeneity across HLA genes and the high heterogeneity within HLA alleles complicate the identification of genomic source loci for sequencing reads. Here, we present SpecHLA, which utilizes fine-tuned reads binning and local assembly to achieve accurate full-resolution HLA typing. SpecHLA accepts sequencing data from paired-end, 10×-linked-reads, high-throughput chromosome conformation capture (Hi-C), Pacific Biosciences (PacBio), and Oxford Nanopore Technology (ONT). It can also incorporate pedigree data and genotype frequency to refine typing. In 32 Human Genome Structural Variation Consortium, Phase 2 (HGSVC2) samples, SpecHLA achieved 98.6% accuracy for G-group-resolution HLA typing, inferring entire HLA alleles with an average of three mismatches fewer, ten gaps fewer, and 590 bp less edit distance than HISAT-genotype per allele. Additionally, SpecHLA exhibited a 2-field typing accuracy of 98.6% in 875 real samples. Finally, SpecHLA detected HLA loss of heterozygosity with 99.7% specificity and 96.8% sensitivity in simulated samples of cancer cell lines. © 2023 The Author(s).

Research Area(s)

  • cancer, CP: Genetics, CP: Immunology, haplotype, HLA LOH, HLA sequence, HLA typing, phase

Download Statistics

No data available