Abstract
In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the solid state synthesis of NaxMnO2, with particular interest on the synthesis of P2 type Na2/3MnO2. It was found that there were multi intermediate phases formed before NaMnO2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO2 with P2 Na2/3MnO2. A P2 type Na2/3MnO2 was synthesized at reduced temperature (600 °C). The influence of Na2CO3 impurity on the electrochemical performance of P2 Na2/3MnO2 was thoroughly investigated in our work. It was found that the content of Na2CO3 can be reduced by optimizing Na2CO3/MnCO3 ratio during the solid state reaction or other post treatment such as washing with water. We expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.
| Original language | English |
|---|---|
| Pages (from-to) | 114-121 |
| Journal | Journal of Power Sources |
| Volume | 341 |
| DOIs | |
| Publication status | Published - 15 Feb 2017 |
| Externally published | Yes |
Bibliographical note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].Research Keywords
- In situ HEXRD
- In situ XANES
- P2 type Na2/3MnO2
- Sodium deficiency
- Sodium ion battery
- Solid-state synthesis