SIMULTANEOUSLY RECOVERING POTENTIALS AND EMBEDDED OBSTACLES FOR ANISOTROPIC FRACTIONAL SCHRODINGER OPERATORS
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 197-210 |
Journal / Publication | Inverse Problems and Imaging |
Volume | 13 |
Issue number | 1 |
Online published | Dec 2018 |
Publication status | Published - Feb 2019 |
Externally published | Yes |
Link(s)
Abstract
Let A ∈ Sym (n×n) be an elliptic 2-tensor. Consider the anisotropic fractional Schrödinger operator L sA + q, where L sA := (−∇·( A (x) ∇))s
, s ∈
(0, 1) and q ∈ L∞. We are concerned with the simultaneous recovery of q and possibly embedded soft or hard obstacles inside q by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain Ω associated with LsA + q. It is shown that a single measurement can uniquely determine the embedded obstacle, independent of the surrounding potential q. If multiple measurements are allowed, then the surrounding potential q can also be uniquely recovered. These are surprising findings since in the local case, namely s =1, both the obstacle recovery by a single measurement and the simultaneous recovery of the surrounding potential by multiple measurements are long-standing problems and still remain open in the literature. Our argument for the nonlocal inverse problem is mainly based on the strong uniqueness property and Runge approximation property for anisotropic fractional Schrödinger operators.
Research Area(s)
- Fractional elliptic operators, Nonlocal inverse problem, Runge approximation property, Simultaneous recovering, Strong uniqueness property
Citation Format(s)
SIMULTANEOUSLY RECOVERING POTENTIALS AND EMBEDDED OBSTACLES FOR ANISOTROPIC FRACTIONAL SCHRODINGER OPERATORS. / Cao, Xinlin; Lin, Yi-Hsuan; Liu, Hongyu.
In: Inverse Problems and Imaging, Vol. 13, No. 1, 02.2019, p. 197-210.
In: Inverse Problems and Imaging, Vol. 13, No. 1, 02.2019, p. 197-210.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review