Simulation Opyimization for Medical Staff Configuration at Emergency Department in Hong Kong

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1-11
Journal / PublicationIEEE Transactions on Automation Science and Engineering
Volume99
Publication statusAccepted/In press/Filed - May 2017

Abstract

Medical staff configuration is a critical problem in the management of an emergency department (ED) in Hong Kong (HK). Given the service requirements by HK government, it is imperative for the hospital managers to develop medical staff configuration in a cost-and-time-effective way. In this paper, the medical staff configuration problem in ED is modeled as minimizing the total labor cost while satisfying the service quality requirements. To solve this issue, we propose a highly efficient search method, called random boundary generation with feasibility detection (RBG-FD). The random boundary generation (RBG) is applied to efficiently identify good-quality solutions based on the objective value. The feasibility detection (FD) procedure is used to retain the probability of correct feasibility detection of each sampled solution at the desired level, which intrinsically allocates a reasonable number of simulation replications. To estimate the performance measures of the ED, a discrete-event simulation model is developed to reflect the patient flow. Using these techniques, the efficiency of identifying the optimal staff configuration can be significantly improved. A case study is performed in a public hospital in HK. The numerical results indicate significantly higher practicability and efficiency of the proposed method with different patient arrival rates and service constraints.