Short-Term Soil Moisture Forecasting via Gaussian Process Regression with Sample Selection
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Article number | 3085 |
Number of pages | 17 |
Journal / Publication | Water (Switzerland) |
Volume | 12 |
Issue number | 11 |
Online published | 3 Nov 2020 |
Publication status | Published - Nov 2020 |
Externally published | Yes |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85095931774&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(a9b15820-80dd-41cd-90e6-690646f36638).html |
Abstract
Soil moisture is a critical limiting factor for crop growth. Accurate soil moisture prediction helps to schedule irrigation and improve the crop production. A soil moisture prediction method based on Gaussian Process Regression (GPR) is proposed in this paper. In order to reduce the computation time of the GPR model, the Radially Uniform (RU) design algorithm was incorporated into the sample selection during the training procedure. Thus, representative training samples are identified and less training time is required. To validate the proposed prediction model, the soil moisture data collected in Beijing, China, was fully utilized. The experimental results demonstrate that the forecasting performance of the GPR model with the RU design algorithm is generally better than that of the generic GPR model in terms of less forecasting errors for both deterministic and probabilistic forecasting, while less computing time is needed for the model training.
Research Area(s)
- Gaussian Process Regression, Radially Uniform design, Soil moisture forecasting
Bibliographic Note
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Citation Format(s)
Short-Term Soil Moisture Forecasting via Gaussian Process Regression with Sample Selection. / Liu, Mingshuai; Huang, Chao; Wang, Long et al.
In: Water (Switzerland), Vol. 12, No. 11, 3085, 11.2020.
In: Water (Switzerland), Vol. 12, No. 11, 3085, 11.2020.
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Download Statistics
No data available