Series-Connected Current-Source-Mode Multiple-Output Converters with High Step-Down Ratio and Simple Control

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

6 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number8610143
Pages (from-to)10082-10093
Journal / PublicationIEEE Transactions on Power Electronics
Volume34
Issue number10
Online published11 Jan 2019
Publication statusPublished - Oct 2019
Externally publishedYes

Abstract

In this paper, a two-stage transformerless multiple-output converter is proposed for applications requiring a high voltage step-down ratio. The proposed circuit transfers power via a current interface and the use of current-source-mode (CSM) converters, resulting in low voltage stress and drastically simplified control. The first stage of this configuration is regulated to provide a constant current to the second stage. The second stage consists of series-connected CSM boost converters. The high step-down ratio of the proposed configuration reduces the voltage stress in the switches of the second stage. The series-connected CSM converters are inherently independent of each other, leading to a very simple control scheme without the need for decoupling of the input voltage of the interconnected converters. Input voltage variation to the system will not affect the input voltage of the second stage. Load variation in one output will not affect the other outputs. If one or more CSM converters are shorted, there is no impact on other converters. These advantages enable a high scalability. Besides, the first stage of the proposed configuration can operate both in continuous conduction mode (CCM) and discontinuous conduction mode (DCM) with the same control strategy. This feature leads to a low control complexity and elimination of inductors. The performance of the proposed converter is illustrated with a laboratory prototype driving light emitting diodes (LEDs).

Research Area(s)

  • Continuous conduction mode (CCM), current-source-mode (CSM) converters, discontinuous conduction mode (DCM), high step-down ratio, series-connected configuration