Self-doping and magnetic ordering induced by extended line defects in graphene
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 045425 |
Journal / Publication | Physical Review B - Condensed Matter and Materials Physics |
Volume | 91 |
Issue number | 4 |
Online published | 22 Jan 2015 |
Publication status | Published - Jan 2015 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-84921780529&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(42cdc3c0-9005-4083-be41-9774fcc128ee).html |
Abstract
Based on first-principles calculations, we reveal that the interactions between extended line defects (ELDs) of type "585" (formed by five and eight membered rings) ELDs embedded in graphene can induce ordered magnetism and self-doping of graphene. By reducing the distance between 585 ELDs, a distinct charge transfer is predicted from the center of 585 ELDs to their edges, which induces a Dirac point shift below the Fermi level, resulting in distance- or density-dependent n-type doping in the graphene. Relevant to the above finding, we found a distance-dependent spin polarization at the edges of 585 ELDs, attributable to the rigidity of the π electronic structure. Our finding suggests a promising approach for achieving n-type graphene for spintronic devices by creating 585 ELDs.
Research Area(s)
Citation Format(s)
Self-doping and magnetic ordering induced by extended line defects in graphene. / Ren, Ji-Chang; Ding, Zejun; Zhang, Rui-Qin et al.
In: Physical Review B - Condensed Matter and Materials Physics, Vol. 91, No. 4, 045425, 01.2015.
In: Physical Review B - Condensed Matter and Materials Physics, Vol. 91, No. 4, 045425, 01.2015.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available