Self-doping and magnetic ordering induced by extended line defects in graphene

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

14 Scopus Citations
View graph of relations



Original languageEnglish
Article number045425
Journal / PublicationPhysical Review B - Condensed Matter and Materials Physics
Issue number4
Online published22 Jan 2015
Publication statusPublished - Jan 2015



Based on first-principles calculations, we reveal that the interactions between extended line defects (ELDs) of type "585" (formed by five and eight membered rings) ELDs embedded in graphene can induce ordered magnetism and self-doping of graphene. By reducing the distance between 585 ELDs, a distinct charge transfer is predicted from the center of 585 ELDs to their edges, which induces a Dirac point shift below the Fermi level, resulting in distance- or density-dependent n-type doping in the graphene. Relevant to the above finding, we found a distance-dependent spin polarization at the edges of 585 ELDs, attributable to the rigidity of the π electronic structure. Our finding suggests a promising approach for achieving n-type graphene for spintronic devices by creating 585 ELDs.

Research Area(s)

Download Statistics

No data available