Self-consistent theory of fractional quantum anomalous Hall states in rhombohedral graphene

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number115146
Number of pages19
Journal / Publication Physical Review B: covering condensed matter and materials physics
Volume110
Publication statusPublished - 24 Sept 2024

Abstract

The fractional quantum anomalous Hall (FQAH) effect in rhombohedral pentalayer graphene (PLG) has attracted significant attention due to its potential for observing exotic quantum states. In this work, we present a self-consistent Hartree-Fock theory for the FQAH effect in rhombohedral PLG. In particular, we focus on the convergence of the Hartree-Fock calculation with various reference fields and discuss the stability of the FQAH states in PLG. We show that the so-called charge neutrality scheme provides an unambiguous result for the Hartree-Fock calculation, as it ensures a convergence with respect to the momentum cutoff. Based on the Hartree-Fock band structure, we further carry out exact diagonalization calculations to explore the stability of the FQAH states in PLG. Our work provides an improved and unified (minimal) theoretical framework to understand the FQAH effect in rhombohedral PLG and paves the way for future studies. © 2024 American Physical Society