Schema-like learning and memory consolidation acting through myelination

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

1 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)11758-11775
Journal / PublicationFASEB Journal
Volume33
Issue number11
Online published28 Aug 2019
Publication statusPublished - Nov 2019

Abstract

Memory is a dynamic brain function that is continually processed after encoding. Although psychologic concepts of mental schema are now well established, they have rarely been considered in animal studies. We used a behavior paradigm of multiple flavor-place paired associates (PAs) and showed that memory schema facilitates fast acquisition of new PAs in a single trial. The hippocampus is necessary for the encoding of new PAs and for memory retrieval within a certain time window—24 h following new PA consolidation. Whereas the anterior cingulate cortex (ACC) plays a critical role for dynamic PA learning and consolidation during training sessions, ACC is essential in schema representation and activation. New myelin generation is essential for learning. Neural activity in the cortical regions impacts myelination by regulating oligodendrocyte (OL) proliferation, differentiation, and myelin formation. Here, we show that newly formed OL progenitor cells and mature OLs are increased following repeated PA learning and that establishment of the memory schema is associated with enhanced myelin strength in the ACC region. Furthermore, to ensure that myelination is necessary for the acquisition of paired-associate learning, ACC lysolecithin-induced demyelination revealed impaired PA learning associated with decrease in ACC θ band power and reduced spike-field coherence and phase-locking in ACC.—Hasan, M., Kanna, M. S., Jun, W., Ramkrishnan, A. S., Iqbal, Z., Lee, Y., Li, Y. Schema-like learning and memory consolidation acting through myelination.

Research Area(s)

  • brain oscillations, anterior cingulate cortex, hippocampus, myelin plasticity, circuitry synchronization