Scalable heterogeneous translated hashing

Ying Wei, Yangqiu Song, Yi Zhen, Bo Liu, Qiang Yang

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review

32 Citations (Scopus)

Abstract

Hashing has enjoyed a great success in large-scale similarity search. Recently, researchers have studied the multi-modal hashing to meet the need of similarity search across different types of media. However, most of the existing methods are applied to search across multi-views among which explicit bridge information is provided. Given a heterogeneous media search task, we observe that abundant multi-view data can be found on the Web which can serve as an auxiliary bridge. In this paper, we propose a Heterogeneous Translated Hashing (HTH) method with such auxiliary bridge incorporated not only to improve current multi-view search but also to enable similarity search across heterogeneous media which have no direct correspondence. HTH simultaneously learns hash functions embedding heterogeneous media into different Hamming spaces, and translators aligning these spaces. Unlike almost all existing methods that map heterogeneous data in a common Hamming space, mapping to different spaces provides more flexible and discriminative ability. We empirically verify the effectiveness and efficiency of our algorithm on two real world large datasets, one publicly available dataset of Flickr and the other MIRFLICKR-Yahoo Answers dataset. © 2014 ACM.
Original languageEnglish
Title of host publicationKDD 2014 - Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages791-800
ISBN (Print)9781450329569
DOIs
Publication statusPublished - 2014
Externally publishedYes
Event20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014 - New York, NY, United States
Duration: 24 Aug 201427 Aug 2014

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014
PlaceUnited States
CityNew York, NY
Period24/08/1427/08/14

Bibliographical note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].

Research Keywords

  • hash function learning
  • heterogeneous translated hashing
  • scalability

Fingerprint

Dive into the research topics of 'Scalable heterogeneous translated hashing'. Together they form a unique fingerprint.

Cite this