Rotating fluids with self-gravitation in bounded domains

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

35 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)345-377
Journal / PublicationArchive for Rational Mechanics and Analysis
Volume173
Issue number3
Publication statusPublished - Sep 2004
Externally publishedYes

Abstract

In this paper, we study the steady solutions of Euler-Poisson equations in bounded domains with prescribed angular velocity. This models a rotating Newtonian star consisting of a compressible perfect fluid with given equation of state P = eS ργ. When the domain is a ball and the angular velocity is constant, we obtain both existence and non-existence theorems, depending on the adiabatic gas constant γ. In addition we obtain some interesting properties of the solutions; e.g., monotonicity of the radius of the star with both angular velocity and central density. We also prove that the radius of a rotating spherically symmetric star, with given constant angular velocity and constant entropy, is uniformly bounded independent of the central density. This is physically striking and in sharp contrast to the case of the non-rotating star. For general domains and variable angular velocities, both an existence result for the isentropic equations of state and non-existence result for the non-isentropic equation of state are also obtained.