Role of microstructure in the aging-related deterioration of the toughness of human cortical bone

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

113 Scopus Citations
View graph of relations

Author(s)

  • R.K. Nalla
  • J.J. Kruzic
  • J.H. Kinney
  • M. Balooch
  • J.W. Ager III

Detail(s)

Original languageEnglish
Pages (from-to)1251-1260
Journal / PublicationMaterials Science and Engineering C
Volume26
Issue number8
Online published3 Oct 2005
Publication statusPublished - Sept 2006
Externally publishedYes

Abstract

The aging-related deterioration of the fracture properties of bone, coupled with higher life expectancy, is responsible for increasing incidence of bone fracture in the elderly; consequently, an understanding of how these fracture properties degrade with age is essential. In this study, ex vivo fracture experiments have been performed to quantitatively assess the effect of age on human cortical bone in the proximal-distal orientation, i.e., longitudinally along the osteons. Because cortical bone exhibits rising crack-growth resistance with crack extension, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over six decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack. An examination of the micro-/nano-structural changes accompanying the process of aging, using optical microscopy, X-ray tomography, nanoindentation and Raman spectroscopy, is shown to support such observations.

Research Area(s)

  • Aging, Bridging, Cortical bone, Fracture toughness, R-curve, Tomography

Citation Format(s)

Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. / Nalla, R.K.; Kruzic, J.J.; Kinney, J.H. et al.
In: Materials Science and Engineering C, Vol. 26, No. 8, 09.2006, p. 1251-1260.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review