TY - JOUR
T1 - Robust Nitritation Sustained by Acid-Tolerant Ammonia-Oxidizing Bacteria
AU - Wang, Zhiyao
AU - Zheng, Min
AU - Meng, Jia
AU - Hu, Zhetai
AU - Ni, Gaofeng
AU - Guerrero Calderon, Angelica
AU - Li, Huijuan
AU - De Clippeleir, Haydee
AU - Al-Omari, Ahmed
AU - Hu, Shihu
AU - Yuan, Zhiguo
PY - 2021/2/2
Y1 - 2021/2/2
N2 - Oxidation of ammonium to nitrite rather than nitrate, i.e., nitritation, is critical for autotrophic nitrogen removal. This study demonstrates a robust nitritation process in treating low-strength wastewater, obtained from a mixture of real mainstream sewage with sidestream anaerobic digestion liquor. This is achieved through cultivating acid-tolerant ammonia-oxidizing bacteria (AOB) in a laboratory nitrifying bioreactor at pH 4.5-5.0. It was shown that nitrite accumulation with a high NO2-/(NO2- + NO3-) ratio of 95 ± 5% was stably maintained for more than 300 days, and the obtained volumetric NH4+ removal rate (i.e., 188 ± 14 mg N L-1 d-1) was practically useful. 16S rRNA gene sequencing analyses indicated the dominance of new AOB, "Candidatus Nitrosoglobus,"in the nitrifying guild (i.e., 1.90 ± 0.08% in the total community), with the disappearance of typical activated sludge nitrifying microorganisms, including Nitrosomonas, Nitrospira, and Nitrobacter. This is the first identification of Ca. Nitrosoglobus as key ammonia oxidizers in a wastewater treatment system. It was found that Ca. Nitrosoglobus can tolerate low pH (<5.0), and free nitrous acid (FNA) at levels that inhibit AOB and nitrite-oxidizing bacteria (NOB) commonly found in wastewater treatment processes. The in situ inhibition of NOB leads to accumulation of nitrite (NO2-), which along with protons (H+) also produced in ammonium oxidation generates and sustains FNA at 3.0 ± 1.4 mg HNO2-N L-1. As such, robust PN was achieved under acidic conditions, with a complete absence of NOB. Compared to previous nitritation systems, this acidic nitritation process is featured by a higher nitric oxide (NO) but a lower nitrous oxide (N2O) emission level, with the emission factors estimated at 1.57 ± 0.08 and 0.57 ± 0.03%, respectively, of influent ammonium nitrogen load. © 2021 American Chemical Society.
AB - Oxidation of ammonium to nitrite rather than nitrate, i.e., nitritation, is critical for autotrophic nitrogen removal. This study demonstrates a robust nitritation process in treating low-strength wastewater, obtained from a mixture of real mainstream sewage with sidestream anaerobic digestion liquor. This is achieved through cultivating acid-tolerant ammonia-oxidizing bacteria (AOB) in a laboratory nitrifying bioreactor at pH 4.5-5.0. It was shown that nitrite accumulation with a high NO2-/(NO2- + NO3-) ratio of 95 ± 5% was stably maintained for more than 300 days, and the obtained volumetric NH4+ removal rate (i.e., 188 ± 14 mg N L-1 d-1) was practically useful. 16S rRNA gene sequencing analyses indicated the dominance of new AOB, "Candidatus Nitrosoglobus,"in the nitrifying guild (i.e., 1.90 ± 0.08% in the total community), with the disappearance of typical activated sludge nitrifying microorganisms, including Nitrosomonas, Nitrospira, and Nitrobacter. This is the first identification of Ca. Nitrosoglobus as key ammonia oxidizers in a wastewater treatment system. It was found that Ca. Nitrosoglobus can tolerate low pH (<5.0), and free nitrous acid (FNA) at levels that inhibit AOB and nitrite-oxidizing bacteria (NOB) commonly found in wastewater treatment processes. The in situ inhibition of NOB leads to accumulation of nitrite (NO2-), which along with protons (H+) also produced in ammonium oxidation generates and sustains FNA at 3.0 ± 1.4 mg HNO2-N L-1. As such, robust PN was achieved under acidic conditions, with a complete absence of NOB. Compared to previous nitritation systems, this acidic nitritation process is featured by a higher nitric oxide (NO) but a lower nitrous oxide (N2O) emission level, with the emission factors estimated at 1.57 ± 0.08 and 0.57 ± 0.03%, respectively, of influent ammonium nitrogen load. © 2021 American Chemical Society.
UR - http://www.scopus.com/inward/record.url?scp=85099793582&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85099793582&origin=recordpage
U2 - 10.1021/acs.est.0c05181
DO - 10.1021/acs.est.0c05181
M3 - RGC 21 - Publication in refereed journal
C2 - 33444018
SN - 0013-936X
VL - 55
SP - 2048
EP - 2056
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 3
ER -