Robust mixed H2/H∞ control for a class of nonlinear stochastic systems

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

25 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)175-184
Journal / PublicationIEE Proceedings: Control Theory and Applications
Volume153
Issue number2
Publication statusPublished - 2006

Abstract

The problem of mixed H2/H control is considered for a class of uncertain discrete-time nonlinear stochastic systems. The nonlinearities are described by statistical means of the stochastic variables and the uncertainties are represented by deterministic norm-bounded parameter perturbations. The mixed H2/H control problem is formulated in terms of the notion of exponentially mean-square quadratic stability and the characterisations of both the H2 control performance and the H robustness performance. A new technique is developed to deal with the matrix trace terms arising from the stochastic nonlinearities and the well-known S-procedure is adopted to handle the deterministic uncertainities. A unified framework is established to solve the addressed mixed H2/H control problem using a linear matrix inequality approach. Within such a framework, two additional optimisation problems are discussed, one is to optimise the H robustness performance, and the other is to optimise the H2 control performance. An illustrative example is provided to demonstrate the effectiveness of the proposed method.