Robust estimation and model identification for longitudinal data varying-coefficient model

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)2701-2719
Journal / PublicationCommunications in Statistics - Theory and Methods
Volume47
Issue number11
Online published11 Oct 2017
Publication statusPublished - 2018

Abstract

It is well known that M-estimation is a widely used method for robust statistical inference and the varying coefficient models have been widely applied in many scientific areas. In this paper, we consider M-estimation and model identification of bivariate varying coefficient models for longitudinal data. We make use of bivariate tensor-product B-splines as an approximation of the function and consider M-type regression splines by minimizing the objective convex function. Mean and median regressions are included in this class. Moreover, with a double smoothly clipped absolute deviation (SCAD) penalization, we study the problem of simultaneous structure identification and estimation. Under approximate conditions, we show that the proposed procedure possesses the oracle property in the sense that it is as efficient as the estimator when the true model is known prior to statistical analysis. Simulation studies are carried out to demonstrate the methodological power of the proposed methods with finite samples. The proposed methodology is illustrated with an analysis of a real data example.

Research Area(s)

  • B-spline, longitudinal data, oracle property, robust estimation, varying coefficient