Releasing the Bubbles : Nanotopographical Electrocatalyst Design for Efficient Photoelectrochemical Hydrogen Production in Microgravity Environment

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

  • Ömer Akay
  • Jeffrey Poon
  • Craig Robertson
  • Beatriz Roldan Cuenya
  • Michael Giersig
  • Katharina Brinkert

Detail(s)

Original languageEnglish
Article number2105380
Journal / PublicationAdvanced Science
Volume9
Issue number8
Online published21 Jan 2022
Publication statusPublished - 15 Mar 2022
Externally publishedYes

Link(s)

Abstract

Photoelectrochemical devices integrate the processes of light absorption, charge separation, and catalysis for chemical synthesis. The monolithic design is interesting for space applications, where weight and volume constraints predominate. Hindered gas bubble desorption and the lack of macroconvection processes in reduced gravitation, however, limit its application in space. Physico-chemical modifications of the electrode surface are required to induce gas bubble desorption and ensure continuous device operation. A detailed investigation of the electrocatalyst nanostructure design for light-assisted hydrogen production in microgravity environment is described. p-InP coated with a rhodium (Rh) electrocatalyst layer fabricated by shadow nanosphere lithography is used as a model device. Rh is deposited via physical vapor deposition (PVD) or photoelectrodeposition through a mask of polystyrene (PS) particles. It is observed that the PS sphere size and electrocatalyst deposition technique alter the electrode surface wettability significantly, controlling hydrogen gas bubble detachment and photocurrent–voltage characteristics. The highest, most stable current density of 37.8 mA cm−2 is achieved by depositing Rh via PVD through 784 nm sized PS particles. The increased hydrophilicity of the photoelectrode results in small gas bubble contact angles and weak frictional forces at the solid–gas interface which cause enhanced gas bubble detachment and enhanced device efficiency. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH

Research Area(s)

  • (photo-)electrochemical gas bubble evolution, electrocatalyst nanotopography, hydrogen evolution, microgravity, photoelectrocatalysis, shadow nanosphere lithography

Citation Format(s)

Releasing the Bubbles: Nanotopographical Electrocatalyst Design for Efficient Photoelectrochemical Hydrogen Production in Microgravity Environment. / Akay, Ömer; Poon, Jeffrey; Robertson, Craig et al.
In: Advanced Science, Vol. 9, No. 8, 2105380, 15.03.2022.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

Download Statistics

No data available