Regulating NO2 adsorption at ambient temperature by manipulating copper species as binding sites in copper-modified SSZ-13 zeolites

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

  • Tianqi Wang
  • Calvin Ku
  • Aamir Hanif
  • Tian Tian
  • Bernt Johannessen
  • Qinfen Gu
  • Ziyi Li

Detail(s)

Original languageEnglish
Pages (from-to)30329-30339
Journal / PublicationJournal of Materials Chemistry A
Volume12
Issue number44
Online published15 Oct 2024
Publication statusPublished - 28 Nov 2024

Link(s)

Abstract

Atmospheric NO2 pollution poses significant risks to human health and the environment even at low concentrations, necessitating the development of efficient technologies for its removal under ambient conditions. In this study copper (Cu)-modified SSZ-13 zeolites (referred to as Cun+SSZ-13 where n represents the valence state of Cu) were developed for NO2 removal by adsorption. Cun+SSZ-13 zeolites containing Cu species with different valence states and proportions were prepared by reducing a Cu2+-exchanged SSZ-13 zeolite (Cu2+SSZ-13) using H2 at different temperatures. The Cun+SSZ-13 reduced at 190 °C showed the highest NO2 removal capacity (1.79 mmol g−1), outperforming pristine SSZ-13 and Cu2+SSZ-13 by 52.3% and 19.4%, respectively. The improvement was due to the increased amount of adsorption sites (Cu+ and H+) and the stronger affinity of Cu+ than Cu2+ for NO2, as confirmed by density functional theory (DFT) calculations. The generation of Cu0 nanoparticles and moisture in zeolites during reduction was undesirable for NO2 adsorption. However, this could be eliminated by lowering the reduction temperature and performing thermal activation, respectively. This work provides systematic methods for designing zeolite adsorbents for ambient NO2 removal and offers insights into the burgeoning field of air pollution control. © 2024 The Royal Society of Chemistry.

Citation Format(s)

Regulating NO2 adsorption at ambient temperature by manipulating copper species as binding sites in copper-modified SSZ-13 zeolites. / Sun, Mingzhe; Wang, Tianqi; Ku, Calvin et al.
In: Journal of Materials Chemistry A, Vol. 12, No. 44, 28.11.2024, p. 30329-30339.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

Download Statistics

No data available