Regularity of solutions for the Boltzmann equation without angular cutoff

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

  • Radjesvarane Alexandre
  • Yoshinore Morimoto
  • Seiji Ukai
  • Chao-Jiang Xu
  • Tong Yang

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)747-752
Journal / PublicationComptes Rendus Mathematique
Volume347
Issue number13-14
Publication statusPublished - Jul 2009

Abstract

We prove that classical solution of the spatially inhomogeneous and angular non-cutoff Boltzmann equation is C with respect to all variables, locally in the space and time variables. The proof relies on a generalized uncertainty principle, some improved upper bound and coercivity estimates on the nonlinear collision operator, and some subtle analysis on the commutators between the collision operators and some appropriately chosen pseudo-differential operators. To cite this article: R. Alexandre et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009.

Citation Format(s)

Regularity of solutions for the Boltzmann equation without angular cutoff. / Alexandre, Radjesvarane; Morimoto, Yoshinore; Ukai, Seiji et al.
In: Comptes Rendus Mathematique, Vol. 347, No. 13-14, 07.2009, p. 747-752.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review