Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number116717
Journal / PublicationEcotoxicology and Environmental Safety
Volume282
Online published13 Jul 2024
Publication statusPublished - 1 Sept 2024

Link(s)

Abstract

Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25 U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50 mg/L was effectively transformed via the whole-cell biocatalyst within 18 h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2 % of the initial activity and retained over 87.46 % of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination. © 2024 The Authors

Research Area(s)

  • Antibiotic pollution, Cell surface display, Chlortetracycline degradation, Manganese peroxidase, Wastewater treatment

Citation Format(s)

Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst. / Liu, Minrui; Wang, Chuangxin; Qi, Xing-e et al.
In: Ecotoxicology and Environmental Safety, Vol. 282, 116717, 01.09.2024.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

Download Statistics

No data available