Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of Shewanella oneidensis
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 3599-3608 |
Journal / Publication | Environmental Science & Technology |
Volume | 54 |
Issue number | 6 |
Online published | 17 Feb 2020 |
Publication status | Published - 17 Mar 2020 |
Link(s)
Abstract
Pursuing efficient approaches to promote the extracellular electron transfer (EET) of extracellular respiratory bacteria is essential to their application in environmental remediation and waste treatment. Here, we report a new strategy of tuning electron flux by clustered regularly interspaced short palindromic repeat (CRISPR)-ddAsCpf1-based rediverting (namely STAR) to enhance the EET capacity of Shewanella oneidensis MR-1, a model extracellular respiratory bacterium widely present in the environment. The developed CRISPR-ddAsCpf1 system enabled approximately 100% gene repression with the green fluorescent protein (GFP) as a reporter. Using a WO3 probe, 10 representative genes encoding for putative competitive electron transfer proteins were screened, among which 7 genes were identified as valid targets for EET enhancement. Repressing the valid genes not only increased the transcription level of the L-lactate metabolism genes but also affected the genes involved in direct and indirect EET. Increased riboflavin production was also observed. The feasibility of this strategy to enhance the bioreduction of methyl orange, an organic pollutant, and chromium, a typical heavy metal, was demonstrated. This work implies a great potential of the STAR strategy with the CIRPSR-ddAsCpf1 system for enhancing bacterial EET to favor more efficient environmental remediation applications.
Research Area(s)
Citation Format(s)
Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of Shewanella oneidensis. / Li, Jie; Tang, Qiang; Li, Yang et al.
In: Environmental Science & Technology, Vol. 54, No. 6, 17.03.2020, p. 3599-3608.
In: Environmental Science & Technology, Vol. 54, No. 6, 17.03.2020, p. 3599-3608.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review