TY - JOUR
T1 - Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology
AU - Tu, K.N.
AU - Liu, Yingxia
PY - 2019/4
Y1 - 2019/4
N2 - We review five solder joint reactions in 3D IC packaging technology which are of wide interest: (1) Scallop-type growth of Cu6Sn5 in solid-liquid interdiffusion reaction, (2) Whisker-type growth of Sn crystals at room temperature, (3) Layer-type intermetallic compound (IMC) growth in solid state aging, (4) Porous-type growth of Cu3Sn in μ-bumps, and (5) Pillar-type growth of Cu/Sn IMC down to 1 μm in diameter. The first two have been well covered in books and reviews on solder joint technology, so only certain specific comments will be given here. On the other three, the layer-type IMC growth has been a long standing kinetic problem due to the extremely small concentration gradient across a stoichiometric IMC, but it has been resolved now, following Wagner's approach. The porous-type Cu3Sn was found in 2014. Kinetically, it is a complete cellular precipitation, containing a set of lamellar pores. It is rare because up to now all cellular precipitations are incomplete. The pillar-type Cu/Sn reactions down to 1 μm in diameter were carried out in 2016. Owing to a large surface/volume ratio, the reaction is controlled by surface diffusion, accompanied by interstitial diffusion of Cu in Sn.
AB - We review five solder joint reactions in 3D IC packaging technology which are of wide interest: (1) Scallop-type growth of Cu6Sn5 in solid-liquid interdiffusion reaction, (2) Whisker-type growth of Sn crystals at room temperature, (3) Layer-type intermetallic compound (IMC) growth in solid state aging, (4) Porous-type growth of Cu3Sn in μ-bumps, and (5) Pillar-type growth of Cu/Sn IMC down to 1 μm in diameter. The first two have been well covered in books and reviews on solder joint technology, so only certain specific comments will be given here. On the other three, the layer-type IMC growth has been a long standing kinetic problem due to the extremely small concentration gradient across a stoichiometric IMC, but it has been resolved now, following Wagner's approach. The porous-type Cu3Sn was found in 2014. Kinetically, it is a complete cellular precipitation, containing a set of lamellar pores. It is rare because up to now all cellular precipitations are incomplete. The pillar-type Cu/Sn reactions down to 1 μm in diameter were carried out in 2016. Owing to a large surface/volume ratio, the reaction is controlled by surface diffusion, accompanied by interstitial diffusion of Cu in Sn.
UR - http://www.scopus.com/inward/record.url?scp=85054071201&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85054071201&origin=recordpage
U2 - 10.1016/j.mser.2018.09.002
DO - 10.1016/j.mser.2018.09.002
M3 - RGC 21 - Publication in refereed journal
SN - 0927-796X
VL - 136
SP - 1
EP - 12
JO - Materials Science and Engineering R: Reports
JF - Materials Science and Engineering R: Reports
ER -